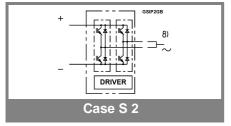

SKiiP 642GB120-2D

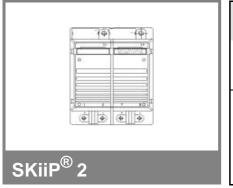
2-pack - integrated intelligent Power System

Power section


SKiiP 642GB120-2D

Power section features

- SKiiP technology inside
- CAL diode technology
- Integrated current sensor
- Integrated temperature sensor
- Integrated heat sink
- IEC 60721-3-3 (humidity) class 3K3/IE32 (SKiiP® 2 System)
- IEC 60068-1 (climate) 40/125/56
- UL recognized file no. E63532
- 1) with assembly of suitable MKP capacitor per terminal
- 8) AC connection busbars must be connected by the user; copper busbars available on request


Absolute Maximum Ratings		s = 25 °C unless otherwise specified				
Symbol	Conditions	Values	Units			
IGBT						
V_{CES}		1200	V			
V _{CES} V _{CC} 1)	Operating DC link voltage	900	V			
V_{GES}		± 20	V			
I _C	T _s = 25 (70) °C	600 (450)	Α			
Inverse diode						
$I_F = -I_C$	T _s = 25 (70) °C	600 (450)	Α			
I _{FSM}	$T_i = 150 ^{\circ}\text{C}, t_p = 10 \text{ms}; \text{sin}.$	4320	Α			
I²t (Diode)	Diode, T _j = 150 °C, 10 ms	93	kA²s			
T_j , (T_{stg})		- 40 (- 25) + 150 (125)	°C			
V _{isol}	AC, 1 min. (mainterminals to heat sink)	3000	V			

Characteristics $T_s = 25$ °C unless otherwise specified									
Symbol	Conditions				min.	typ.	max.	Units	
IGBT									
V_{CEsat}	$I_{\rm C} = 500 A$	A, T _i = 25 (1	25) °C			2,6 (3,1)	3,1	V	
V_{CEO}	$T_i = 25 (1)$					1,2 (1,3)	1,5 (1,6)	V	
r_{CE}	$T_{j} = 25 (1)$	25) °C				2,6 (3,5)	3,2 (4)	mΩ	
I _{CES}	$V_{GE} = 0 \text{ V}, V_{CE} = V_{CES},$					(30)	0,8	mA	
	$T_i = 25 (1)$	25) °C							
E _{on} + E _{off}	I _C = 500 A	A, V _{CC} = 600	O V				150	mJ	
	T _j = 125 °	C, V _{CC} = 90	00 V				265	mJ	
R _{CC' + EE'}	terminal chip, T _i = 125 °C					0,25		mΩ	
L _{CE}	top, botto	m ´				7,5		nH	
C _{CHC}	per phase	e, AC-side				2,8		nF	
Inverse o	diode								
$V_F = V_{EC}$	$I_F = 500 A$	A, T _j = 25 (1	25) °C			2,1 (2)	2,6	V	
V_{TO}	$T_j = 25 (1)$					1,3 (1)	1,4 (1,1)	V	
r _T	$T_j = 25 (1)$					1,7 (2)		mΩ	
E _{rr}	_	$A, V_{CC} = 600$					19	mJ	
	T_j = 125 $^{\circ}$	$C, V_{CC} = 90$	00 V				25	mJ	
Mechani	cal data								
M_{dc}	DC termin	nals, SI Unit	S		6		8	Nm	
M _{ac}	AC terminals, SI Units				13		15	Nm	
w	SKiiP® 2 System w/o heat sink					1,9		kg	
w	heat sink					4,7		kg	
			P16 hea	t sink; 31	10 m ³ /h)	; " _r " refer	ence to		
temperat		sor			1	•			
$R_{th(j-s)I}$	per IGBT						0,045	K/W	
$R_{th(j-s)D}$	per diode						0,125	K/W	
R _{th(s-a)}	per modu						0,043	K/W	
Z_{th}	R _i (mK/W) (max. values)				tau _i (s)				
_	1	2	3	4	1	2	3	4	
$Z_{th(j-r)l}$	5	35	5	0	1	0,13	0,001	1	
Z _{th(j-r)D}	14	96	15	0	1	0,13	0,001	1	
$Z_{th(r-a)}$	13,9	18,9	6,6	3,6	262	50	5	0,02	

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee, expressed or implied is made regarding delivery, performance or suitability.

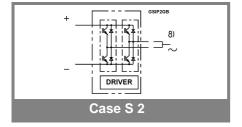
SKiiP 642GB120-2D

Absolute Maximum Ratings		T _a = 25 °C unless otherwise specified		
Symbol	Conditions	Values	Units	
V_{S1}	stabilized 15 V power supply	18	V	
V_{S2}	unstabilized 24 V power supply	30	V	
V_{iH}	input signal voltage (high)	15 + 0,3	V	
dv/dt	secondary to primary side	75	kV/μs	
V_{isollO}	input / output (AC, r.m.s., 2s)	3000	Vac	
V _{isol12}	output 1 / output 2 (AC, r.m.s., 2s)	1500	Vac	
f _{sw}	switching frequency	20	kHz	
f _{out}	output frequency for I=I _C ;sin.	1	kHz	
$T_{op} (T_{stg})$	operating / storage temperature	- 40 + 85	°C	

2-pack - integrated intelligent Power System

2-pack integrated gate driver

SKiiP 642GB120-2D


Gate driver features

- CMOS compatible inputs
- Wide range power supply
- Integrated circuitry to sense phase current, heat sink temperature and DC-bus voltage (option)
- · Short circuit protection
- Over current protection
- Over voltage protection (option)
- Power supply protected against under voltage
- · Interlock of top/bottom switch
- Isolation by transformers
- Fibre optic interface (option for GB-types only)
- IEC 60068-1 (climate) 25/85/56

				/=	05.00\
Characteristics (1 _a					= 25 °C)
Symbol	Conditions	min.	typ.	max.	Units
V _{S1}	supply voltage stabilized	14,4	15	15,6	V
V_{S2}	supply voltage non stabilized	20	24	30	V
I _{S1}	V _{S1} = 15 V	210+43	210+430*f/f _{max} +1,2*(I _{AC} /A)		
I _{S2}	V _{S2} = 24 V	160+290*f/f _{max} +0,85*(I _{AC} /A)			mA
V_{iT+}	input threshold voltage (High)			12,3	V
V_{iT-}	input threshold voltage (Low)	4,6			V
R _{IN}	input resistance		10		kΩ
t _{d(on)IO}	input-output turn-on propagation time input-output turn-off propagation time			1,5 1,4	μs μs
$t_{d(off)IO} $ $t_{pERRRESET}$	error memory reset time	9		1,4	μs
t _{TD}	top / bottom switch : interlock time		3,3		μs
I _{analogOUT}	8 V corresponds to max. current of 15 V supply voltage		600		А
I _{Vs1outmax}	(available when supplied with 24 V)			50	mA
I _{A0max}	output current at pin 12/14			5	mA
V _{0I}	logic low output voltage			0,6	V
V_{0H}	logic high output voltage			30	V
I _{TRIPSC}	over current trip level (I _{analog OUT} = 10 V)		750		Α
I _{TRIPLG}	ground fault protection				Α
T _{tp}	over temperature protection	110		120	°C
U _{DCTRIP}	trip level of U _{DC} -protection	900			V
	(U _{analog OUT} = 9 V); (option)				

For electrical and thermal design support please use SEMISEL. Access to SEMISEL is via SEMIKRON website http://www.semikron.com.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee, expressed or implied is made regarding delivery, performance or suitability.

